One Million Variable Stars from the OGLE Survey

Igor Soszyński

Warsaw University Astronomical Observatory

OGLE

Optical Gravitational Lensing Experiment

- Original goal: search for microlensing events
- 1.3-meter Warsaw Telescope at Las Campanas Observatory, Chile
- 32-chip CCD camera with a field of view of
 1.4 square degrees
- Standard Johnson-Cousins VI filters
- Typical cadence: from 20 minutes to several days
- Time span: 1992 now
- Targets: Galactic bulge, Galactic disk, Magellanic Clouds
- Precision of the photometry: 4 mmag

OGLE fields

Galactic bulge

- Sky coverage: ~3500 square degrees
- ~2 billion stars monitored

Galactic disk

Magellanic

Clouds

- ~10¹² individual measurements
- ~2000 microlensing events per year
- ~70 extrasolar planets
- ~1 million discovered variable stars

THE OGLE COLLECTION OF VARIABLE STARS

The OGLE Collection of Variable Stars

ftp://ftp.astrouw.edu.pl/ogle/ogle4/OCVS/ http://ogledb.astrouw.edu.pl/~ogle/OCVS/

Type of variable stars	Environments	Number of stars
Classical Cepheids	LMC, SMC, GB, GD	9 756
Type II Cepheids	LMC, SMC, GB	1 262
Anomalous Cepheids	LMC, SMC, GB	289
RR Lyrae stars	LMC, SMC, GB	85 517
δ Scuti stars	LMC, GD	2 844
Long-Period Variables (Miras, SRVs, OSARGs)	LMC, SMC, GB	344 214
Eclipsing binaries	LMC, SMC, GB, GD	510 782
R Coronae Borealis stars	LMC	23
TOTAL		954 687

The OGLE Collection of Variable Stars

ftp://ftp.astrouw.edu.pl/ogle/ogle4/OCVS/ http://ogledb.astrouw.edu.pl/~ogle/OCVS/

182 square degrees

<u>RR Lyrae stars</u> in the Galactic Bulge

BEFORE

AFTER

986 objects

39 074 objects

<u>RR Lyrae stars</u> in the Galactic Bulge

BEFORE

AFTER

986 objects

39 074+ objects

Eclipsing binaries in the Galactic Bulge

BEFORE

255 objects

450 598 objects

Eclipsing binaries in the Galactic Bulge

BEFORE

AFTER

255 objects

450 598+ objects

670 square degrees

ស

<u>RR Lyrae stars</u> in the Magellanic Clouds

BEFORE

291 objects

46 443 objects

Large surveys with small telescopes: Past, Present, and Future March 12, 2019 13

<u>RR Lyrae stars</u> in the Magellanic Clouds

BEFORE

291 objects

46 443+ objects

Eclipsing binaries in the Magellanic Clouds

BEFORE

173 objects

48 605 objects

Large surveys with small telescopes: Past, Present, and Future March 12, 2019 15

Why do we need so many variable stars?

- To investigate their statistical properties (e.g. to calibrate the period-luminosity relations).
- To study the structure of the Milky Way and other galaxies.
- To discover extremely rare phenomena in stars or previously unknown types of stellar variability.

DISTANCE SCALE

HST Key Project

THE ASTROPHYSICAL JOURNAL, 553:47-72, 2001 May 20 © 2001. The American Astronomical Society. All rights reserved. Printed in U.S.A.

FINAL RESULTS FROM THE HUBBLE SPACE TELESCOPE KEY PROJECT TO MEASURE THE HUBBLE CONSTANT¹

WENDY L. FREEDMAN,² BARRY F. MADORE,^{2,3} BRAD K. GIBSON,⁴ LAURA FERRARESE,⁵ DANIEL D. KELSON,⁶ SHOKO SAKAI,⁷ JEREMY R. MOULD,⁸ ROBERT C. KENNICUTT, JR.,⁹ HOLLAND C. FORD,¹⁰ JOHN A. GRAHAM,⁶ JOHN P. HUCHRA,¹¹ SHAUN M. G. HUGHES,¹² GARTH D. ILLINGWORTH,¹³ LUCAS M. MACRI,¹¹ AND PETER B. STETSON^{14,15}

Received 2000 July 30; accepted 2000 December 19

(K. Sebo et al., in preparation), and these PL relations are in very good statistical agreement with those of Udalski et al., adjusting to a common distance to the LMC. For about 60 objects common to both samples, with P > 8 days and having both V and I magnitudes, the offsets are -0.004 ± 0.008 mag in I and $+0.013 \pm 0.010$ mag in V (Sebo et al.). The Sebo et al. sample extends to longer periods (~40 days), and has 10 Cepheids with periods greater than 30 days, the limit of the Udalski et al. sample. These 10 Cepheids are all well fitted by, and lie within 1σ of, the period-luminosity slopes defined by the Udalski et al. sample. The Udalski et al. data are clearly the most extensive to date, and we thus adopt their apparent PL relations as fiducial for the reanalysis in this paper.

The Udalski et al. (1999) PL calibration adopts a distance modulus of 18.2 mag, based on a distance determined using the red clump technique, whereas, as discussed above, in this paper we adopt a true distance modulus to the LMC of 18.50 mag. With this modulus and the reddening-corrected Udalski et al. Cepheid data to define the slopes and errors, our adopted M_V and M_I PL relations become

$$M_V = -2.760[\pm 0.03](\log P - 1) - 4.218[\pm 0.02]$$

($\sigma_V = \pm 0.16$), (1)

In this analysis we have (1) consistently adopted only the published Cepheid photometry, which were reduced using the ALLFRAME stellar photometry reduction package, whose phase points were converted to mean magnitudes using intensity-weighted averages (or their template-fitted equivalents).²⁰ (2) To compensate for the small (~ 0.01 mag) mean bias in the PL fits (see the discussion in § 8.4 and Appendix A), we have also applied period cuts to the PL relations, thereby eliminating the shortest period Cepheids, where magnitude incompleteness effects become important. In two cases (NGC 3368 and NGC 300), a single longperiod Cepheid was also dropped because of stochastic effects at the bright (sparsely populated) end of the PL relation, which can similarly bias solutions. The mean correction for this magnitude-limited bias is small (+1%) in distance), but it is systematic, and correcting for it results in larger distances than are determined without this faint-end debiasing. (3) We have adopted a -0.07 mag correction to the Hill et al. (1998) WFPC2 calibration to be consistent with Stetson (1998) and Dolphin (2000). Finally, (4) we have adopted the published slopes of the Udalski et al. (1999) PL relations.

The adoption of the new Udalski et al. (1999) PL slopes alone has a dramatic and unanticipated effect on the previously published Cepheid distances based on the Madore

P = 3.0836710 d 1.5

LMC: 4704

SMC: 4945

GB: 87

0.5

phase

15

apnitnde 15.2 15.4

15.6

0

Classical Cepheids in the Magellanic Clouds 10000 OGLE-IV Number of Cepheids OGLE-III 8000 MACHO OGLE-II Payne-Gaposchkin 6000 Shaple 4000 Shapley 2000 .eavitt 0 1920 1940 1960 2000 2017 1900 1980 Year

Period-luminosity relations for classical Cepheids

Large surveys with small telescopes: Past, Present, and Future March 12, 2019

20

Period-luminosity relations for variable stars in the LMC

Distance to the Large Magellanic Cloud from OGLE eclipsing binaries

Pietrzyński et al. (2013), Nature

Distance to the LMC: 50.0 ± 1.1 kpc

STRUCTURE OF GALAXIES

RR Lyrae stars

RR Lyrae stars in the MCs

Classical Cepheids in the MCs

Large surveys with small telescopes: Past, Present, and Future March 12, 2019 26

3D Structure of the LMC via Classical Cepheids

3D Structure of the SMC via Classical Cepheids

Jacyszyn-Dobrzeniecka et al. (2016)

 $900 \rightarrow 2400$

Skowron et al. (2018)

- OGLE
- GCVS
- ATLAS
- ASAS-SN
- ASAS
 - OTHER

Skowron et al. (2018)

Warping of the Milky Way disk

Skowron et al. (2018)

Flat rotation curve of the Milky Way

NEW TYPES OF VARIABLE STARS

Blue Large-Amplitude Pulsators (BLAPs)

Pietrukowicz et al. (2017)

Fundamental-mode pulsating stars

Periods: *P* = 20 – 40 min

Eff. temperature: $T_{\rm eff} \simeq 30\ 000\ {\rm K}$

Surface gravity: $\log g \sim 4.6$

Type II Cepheids

LMC: 285 objects

SMC: 53 objects

GB: 924 objects

Double-mode type II Cepheids

Smolec et al. (2018) – the first type II Cepheids (BL Herculis stars) with two radial modes excited.

 $P_{10}/P_{\rm F} \approx 0.7$

46

First-overtone type II Cepheids

Fundamental-mode classical pulsators

Large surveys with small telescopes: Past, Present, and Future March 12, 2019

51

Fundamental-mode classical pulsators

Large surveys with small telescopes: Past, Present, and Future March 12, 2019 52

First-overtone classical pulsators

First-overtone classical pulsators

First-overtone type II Cepheids

First-overtone type II Cepheids

CONCLUSIONS

- The OGLE project has increased the number of known variable stars by an order of magnitude.
- Huge samples of variable stars are crucial for
 - exploring the statistical properties of stars
 - studying of the structures, formation and evolution of galaxies
 - detecting new types of behaviors and phenomena in variable stars
- Long-term OGLE photometry allows us to study non-stationary behaviors and evolutionary changes in variable stars.