Compact binaries in the

TESS era

Ingrid Pelisoli TESS WG8.4

Transiting Exoplanet Survey Satellite

TESS

Goal = find nearby, Earth-sized planets

So that they can be fully characterized

2

TESS Observing strategy

- Baseline: 27 days
 - \rightarrow sensitivity to periods shorter than 13 days
- 50 ppm photometric precision (9-15 mag)
- 21 arcsec/pixel

 \rightarrow one must be careful when interpreting data from crowded fields!

TESS Data Products

TESS Working groups

WG-1: Asteroseismology of TESS exoplanet hosts WG-2: Oscillations in solar-type stars WG-3: Oscillating stars in clusters WG-4: Main Sequence AF "classical" pulsators WG-5: Main Sequence OB "classical" pulsators WG-6: RR Lyrae stars and Cepheids WG-7: Red Giant oscillations WG-8: Compact pulsators Evolved Compact Stars Chairs: Stéphane Charpinet, JJ Hermes. WG-8.4: Binaries Coordinators: I. Pelisoli, S. Geier

See how to join at https://tasoc.dk/

Evolved Compact Stars

White dwarfs

Single stellar evolution (> 95% of stars)

Binary evolution

- → 10-30% result from mergers (Toonen et al. 2017)
- → Extremely-low mass white dwarfs (ELMs)

Hot subdwarfs

Mergers

Neutron stars, black holes

Compact binaries

★ (Possibly normal) star + compact object

- \star Several applications, e.g.:
 - Precise mass and radius
 - Constraints to common-envelope evolution
 - Laboratory for studying accretion
 - Accurate ages
 - Multi-messenger astronomy

Some previously known stars AA Dor (HW Vir-type binary)

Some previously known stars

1SWASP J232812.74-395523.3 (EL CVn-type)

1SWASP J232812.74-395523.3 (EL CVn-type)

Some previously known stars

CPD-64°481 (reflection effect)

Two new HW Vir systems

> Four other eclipsing stars

Eleven new reflection systems

Primary = sd0 V = 14.2 P = 0.424 days

Primary = DA V = 15.9 P = 0.280 days

> 85 objects showing sinusoidal variations

(Likely ellipsoidal systems)

Required follow-up

- SPECTRAL CONFIRMATION (Many objects were selected based on photometry only!)
 - Low/intermediate resolution spectra
 (R ~ 1000-5000)
 - Optical and/or near-IR
 (Balmer lines) (to identify the companion)
 - \circ S/N ≥ 5 for identification
 - S/N \gtrsim 30 for spectral fitting

Required follow-up

- RADIAL VELOCITY CURVES (Required for full-characterization of photometrically variable binaries)
 - Intermediate to high resolution spectra (R > 5000)
 - Optical(Balmer lines, He lines)
 - \circ S/N \gtrsim 15

Conclusions

TESS will vastly improve our capacity of characterizing compact binary systems
 [Almost] all-sky! Ideal for population studies.

• Ground-based follow-up is required to take full advantage of the data

• Follow-up effort is suitable for 2-4 m class telescopes; spectra are the main requirement

Thank you! pelisoli@astro.physik.uni-potsdam.de

Flux [e-/s]

19

> Variation from the companion

