Compact binaries in the TESS era

Ingrid Pelisoli ${ }^{\circ}$
TESS WG8. 4
DFC

TESS

Transiting Exoplanet Survey Satellite

Goal = find nearby, Earth-sized planets

TESS Observing strategy

TESS
 Data Products

Continuous stream of 2-second full-frame integrations

2 min Postage Stamps

30 min Full-Frame Images (FFIs)

One orbit produces >600 30minute FFIs from each camera

TESS

Working groups

WG-1: Asteroseismology of TESS exoplanet hosts
WG-2: Oscillations in solar-type stars
WG-3: Oscillating stars in clusters
WG-4: Main Sequence AF "classical" pulsators
WG-5: Main Sequence OB "classical" pulsators
WG-6: RR Lyrae stars and Cepheids
WG-7: Red Giant oscillations
WG-8: Gempaet pulsaters Evolved Compact Stars Chairs: Stéphane Charpinet, JJ Hermes.

WG-8.4: Binaries
Coordinators: I. Pelisoli, S. Geier

See how to join at https://tasoc.dk/

White dwarfs

Evolved

Compact

Stars

?
Single stellar evolution
(> 95\% of stars)
Binary evolution
\rightarrow 10-30\% result from mergers (Toonen et al. 2017)
\rightarrow Extremely-low mass white dwarfs (ELMs)

Hot subdwarfs

Common envelope

Mergers

Neutron stars, black holes

Compact

 binaries(Possibly normal) star + compact object

Several applications, e.g.:

- Precise mass and radius
- Constraints to common-envelope evolution
- Laboratory for studying accretion
- Accurate ages
- Multi-messenger astronomy

Some previously known stars

Previous data: SuperWASP
(Vuckovic et al 2016) Lohr et al.
A\&A 566, A128 (2014)

Some previously known stars

1SWASP J232812.74-395523.3 (EL CVn-type)

Previous data: SuperWASP
Maxted et al. 2014
MNRAS, 2014, 437, 1681

1SWASP J232812.74-395523.3 (EL CVn-type)

*

Pulsations!

CPD-64ํ 481 (reflection effect)

Some

previously known stars

CPD-64ํ 481 (reflection effect)

Some

 previously known stars

It seems that with TESS data we can constrain the inclination!
\rightarrow Companion could be consistent with low-mass MS star (Schaffenroth et al. in prep.)

Some TESS discoveries (so far)

Two new HW Vir systems

Four other eclipsing stars

Some TESS

 discoveries (so far)Eleven new reflection systems

Primary = sdO
$P=0.424$ days

Primary = DA $V=15.9$ $\mathrm{P}=0.280$ days

Some TESS

 discoveries (so far)
85 objects

 showing sinusoidal variations
(Likely ellipsoidal systems)

Required

 follow-up- SPECTRAL CONFIRMATION
(Many objects were selected based on photometry only!)
- Low/intermediate resolution spectra (R ~ 1000-5000)
- Optical and/or near-IR
(Balmer lines) (to identify the companion)
- $S / N \geq 5$ for identification
- $S / N \geq 30$ for spectral fitting

Required follow-up

- RADIAL VELOCITY CURVES
(Required for full-characterization of photometrically variable binaries)
- Intermediate to high resolution spectra ($\mathrm{R}>5000$)
- Optical
(Balmer lines, He lines)
- $\mathrm{S} / \mathrm{N} \gtrsim 15$

Conclusions

- TESS will vastly improve our capacity of characterizing compact binary systems
- [Almost] all-sky! Ideal for population studies.
- Ground-based follow-up is required to take full advantage of the data
- Follow-up effort is suitable for 2-4 m class telescopes; spectra are the main requirement

Some TESS

 discoveries (so far)Variation from the companion

DA, variation from a K type companion

$$
V=8.4
$$

