
PyPlate: a software package for processing

digitized astronomical photographic plates

Taavi Tuvikene

Bamberg, March 11, 2019

The APPLAUSE Collaboration

Raw digitized data

• High-resolution scans

• Low-resolution preview images

• Digitized logbook pages

• Transcribed metadata

• APPLAUSE: ~ 100 000 scans in

24 archives (~ 50 TB)

What do we want to accomplish?

Processed data / publication

• Scans in FITS format

• Metadata in FITS headers and in a

relational database

• Sources extracted from scans +

calibrated coordinates and

magnitudes

• Astrometric solution in FITS

• Harvard DASCH pipeline was described in couple of papers

• Laycock et al. (2010), Tang et al. (2013)

• SExtractor, Astrometry.net, SCAMP were available

• Python was coming into wide use in astronomy

• Astropy version was 0.2.x

Development started in 2013...

PyPlate versions

PyPlate APPLAUSE Release

1.0 DR1 2015-02-14

2.0 DR2 2015-12-23

3.0 DR3 2017-10-23

3.1 – 2019-03-09

4.0 DR4 Summer 2019

PyPlate modules

metadata solve image

database pipeline

metadata

Read CSV files

Read WFPDB files

Handle relations

Calculate
exposure times

Create FITS
headers

solve image database pipeline

Associations between plates, scans, previews, logbooks, logpages

From original (sidereal time, local time) to UT, JD, and HJD. Calculate mid-exposure times.

Following FITS standard and grouping keywords for better readability.
Each keyword is documented with a comment.

Wide-Field Plate Database (Tsvetkov et al. 1997)

Metadata on plates, scans, logbooks, logpages

metadata

Read CSV files

Read WFPDB files

Handle relations

Calculate
exposure times

Create FITS
headers

solve

Extract sources

Flag artefacts

Apply proper
motions

Solve astrometry

Photometric
calibration

Crossmatch with
ext. catalogs

image database pipeline

Machine learning: following talk by Gal Matijevic

Using the SExtractor software

Currently using Tycho-2 and UCAC4. Soon: Gaia DR2

metadata

Read CSV files

Read WFPDB files

Handle relations

Calculate
exposure times

Create FITS
headers

solve

Extract sources

Flag artefacts

Apply proper
motions

Solve astrometry

Photometric
calibration

Crossmatch with
ext. catalogs

image database pipeline

Initially with Astrometry.net, then with SCAMP in subfields.
Getting rid of wave pattern caused by flatbed scanners.

metadata

Read CSV files

Read WFPDB files

Handle relations

Calculate
exposure times

Create FITS
headers

solve

Extract sources

Flag artefacts

Apply proper
motions

Solve astrometry

Photometric
calibration

Crossmatch with
ext. catalogs

image database pipeline

metadata

Read CSV files

Read WFPDB files

Handle relations

Calculate
exposure times

Create FITS
headers

solve

Extract sources

Flag artefacts

Apply proper
motions

Solve astrometry

Photometric
calibration

Crossmatch with
ext. catalogs

image database pipeline

Global calibration curve, corrections in subfields

metadata

Read CSV files

Read WFPDB files

Handle relations

Calculate
exposure times

Create FITS
headers

solve

Extract sources

Flag artefacts

Apply proper
motions

Solve astrometry

Photometric
calibration

Crossmatch with
ext. catalogs

image database pipeline

metadata

Read CSV files

Read WFPDB files

Handle relations

Calculate
exposure times

Create FITS
headers

solve

Extract sources

Flag artefacts

Apply proper
motions

Solve astrometry

Photometric
calibration

Crossmatch with
ext. catalogs

image database pipeline

Machine learning: following talk by Gal Matijevic

Currently: Tycho-2, UCAC4, APASS. Soon: Gaia DR2

Initially with Astrometry.net, then with SCAMP in subfields.
Getting rid of wave pattern caused by flatbed scanners.

Global calibration curve, corrections in subfields

Using the SExtractor software

Currently using Tycho-2 and UCAC4. Soon: Gaia DR2

metadata

Read CSV files

Read WFPDB files

Handle relations

Calculate
exposure times

Create FITS
headers

solve

Extract sources

Flag artefacts

Apply proper
motions

Solve astrometry

Photometric
calibration

Crossmatch with
ext. catalogs

image

Convert
TIFF to FITS

Separate
wedges

database

Create table
structure

Write data
to database

pipeline

Process
scans

Parallel
processing

Requires Python installation, then

pip install pyplate

Easy to install

plate1, 1956-03-11, 21:11:30, 600, Observer Name, Europe/Berlin

plate2, 1956-03-11, 21:30:00, 1800, Observer Name, UT

plate3, 1956-03-12, 23:05:00, 1200, Observer Name, ST

Example: plate metadata (CSV file)

plate_0001.fits, plate1, Scan Author, 2018-10-12

plate_0002.fits, plate2, Scan Author, 2018-10-12

plate_0003.fits, plate3, Scan Author, 2018-10-13

Example: scan metadata (CSV file)

[Files]

csv_dir = /path/to/csv/dir

plate_csv = my_plates.csv

scan_csv = my_scans.csv

Example: configuration file

[my_plates.csv]

plate_id = 1

date_orig = 2

tms_orig = 3

exptime = 4

observer = 5

tz_orig = 6

[my_scans.csv]

filename = 1

plate_id = 2

scan_author = 3

datescan = 4

import pyplate

archive = pyplate.metadata.Archive()

archive.assign_conf('/path/to/my_archive.conf')

archive.read_csv()

Example: reading metadata

Example: metadata calculations

plate_list = archive.get_platelist()

Iterate over the plate list

for pid in plate_list:

plate = archive.get_platemeta(plate_id=pid)

plate.calculate()

Then do something with the metadata

print(plate['jd_avg'])

Example: create FITS header

header = pyplate.metadata.PlateHeader()

header.assign_conf(archive.conf)

header.populate()

plate1 = archive.get_platemeta(plate_id='plate1')

header.update_from_platemeta(plate1)

header.output_to_fits('plate_0001.fits')

SIMPLE = T / file conforms to FITS standard

BITPIX = 16 / number of bits per data pixel

NAXIS = 2 / number of data axes

NAXIS1 = 0 / length of data axis 1

NAXIS2 = 0 / length of data axis 2

BSCALE = 1.0 / physical_value = BZERO + BSCALE * array_value

BZERO = 32768 / physical_value = BZERO + BSCALE * array_value

MINVAL = / minimum image value

MAXVAL = / maximum image value

EXTEND = T / file may contain extensions

--------------------------------------- Original data of the observation

DATEORIG= '1956-03-11' / recorded date of the observation

TMS-ORIG= '21:11:30' / recorded time of the start of exposure 1

TME-ORIG= ' ' / recorded time of the end of exposure 1

JDA-ORIG= / recorded Julian date, mid-point of exposure 1

TIMEFLAG= ' ' / quality flag of recorded time

RA-ORIG = ' ' / recorded right ascension of exposure 1

DEC-ORIG= ' ' / recorded declination of exposure 1

COORFLAG= ' ' / quality flag of recorded coordinates

OBJECT = ' ' / observed object or field (exposure 1)

OBJTYPE = ' ' / object type

EXPTIME = 600 / [s] exposure time of exposure 1

NUMEXP = 1 / number of exposures of the plate

--------------------------------------- Computed data of the observation

DATE-OBS= '1956-03-11T20:11:30' / UT date of the start of exposure 1

DATE-AVG= '1956-03-11T20:16:30' / UT date of the mid-point of exposure 1

DATE-END= ' ' / UT date of the end of exposure 1

YEAR = 1956.19258404 / decimal year of the start of exposure 1

YEAR-AVG= 1956.19259354 / decimal year of the mid-point of exposure 1

YEAR-END= / decimal year of the end of exposure 1

JD = 2435544.34132 / Julian date at the start of exposure 1

JD-AVG = 2435544.34479 / Julian date at the mid-point of exposure 1

JD-END = / Julian date at the end of exposure 1

HJD-AVG = / heliocentric JD at the mid-point of exposure 1

RA = ' ' / right ascension of pointing (J2000) "h:m:s"

DEC = ' ' / declination of pointing (J2000) "d:m:s"

RA_DEG = ' ' / [deg] right ascension of pointing (J2000)

DEC_DEG = ' ' / [deg] declination of pointing (J2000)

--- Scan

SCANNER = 'Epson Expression 10000XL' / scanner name

SCANRES1= 2400 / [dpi] scan resolution along axis 1

SCANRES2= 2400 / [dpi] scan resolution along axis 2

PIXSIZE1= 10.5833 / [um] pixel size along axis 1

PIXSIZE2= 10.5833 / [um] pixel size along axis 2

DATESCAN= '2018-10-12' / scan date and time

SCANAUTH= 'Scan Author' / author of scan

--- Data files

FILENAME= 'plate_0001.fits' / filename of the plate scan

FN-WEDGE= ' ' / filename of the wedge scan

FN-PRE = ' ' / filename of the preview image

FN-COVER= ' ' / filename of the plate cover image

ORIGIN = ' '

DATE = '2019-03-09T20:44:27' / last change of this file

-- WCS

-- Licence

LICENCE = ' '

--- Acknowledgements

-- History

HISTORY Header created with PyPlate v3.1.0 at 2019-03-09T20:44:27

HISTORY Header updated with PyPlate v3.1.0 at 2019-03-09T20:44:27

-- Checksums

CHECKSUM= ' '

DATASUM = ' '

--

Example: parallel processing

filenames = archive.get_scanlist()

pipeline = pyplate.pipeline.PlatePipeline()

pipeline.assign_conf(archive.conf)

pipeline.parallel_run(filenames)

• Extracted ~3.5 billion sources from ~70 000 scans

• Robust: only 17 processes out of 70730 had problems

• Processing time: ~900 CPU core-days

• Used 20 processes in parallel

Performance: APPLAUSE DR3

Results: V466 Cyg light curve

APPLAUSE DR2 (PyPlate 2.0) APPLAUSE DR3 (PyPlate 3.0)

Calibration in annular bins Calibration in sub-fields

• It is open source!

• Install: pip install pyplate

• Use it as a library for your needs

• Check documentation: pyplate.readthedocs.io

• Contribute: www.github.com/astrotuvi/pyplate

Report bugs, feature requests, etc

PyPlate

http://pyplate.readthedocs.io/
http://www.github.com/astrotuvi/pyplate

E-mail: taavi.tuvikene@ut.ee

GitHub: astrotuvi

Thank you!

