Digitized photographic plate photometry with VaST software

Kirill Sokolovsky Michigan State University and Sternberg Astronomical Institute

One way is image subtraction...

Example of image subtraction: discovery images of AT2018cow by the ATLAS survey

Construct lightcurves of all sources, find which stand out:

Construct lightcurves of all sources, find which stand out:

- smooth
- high scatter
- periodic

Construct lightcurves of all sources, find which stand out:

- smooth
- high scatter
- periodic

Variability Search Toolkit (VaST)

Original design goals

- Find variable sources in a series of sky images
- Support photgraphic and CCD images
- Can be used interactively or as pipeline
- Modest hardware requirements = lots of big images

Open source - comments and contributions welcome! https://github.com/kirxkirx/vast http://scan.sai.msu.ru/vast/

VaST workflow

Input: FITS images with obs. date/time (plate cutouts)

- Source detection/aperture photometry with SExtractor
- Triangle matching -> star matching -> lightcurves
- Plate-solve reference image with Astrometry.net code
- Fix astrometry TPV/SIP problem
- Match to external catalogs: UCAC5 (μ), APASS B, PS1
- Magnitude scale calibration
- Local astrometric corrections
 Result: calibrated lightcurves + source ID =>

TPV vs SIP convention problem

Two alternative FITS header conventions to approximate distortions with polynomials

- **SIP** supported by Astrometry.net code
- **TPV** supported by **SExtractor** & Co

Ignore? There are bigger issues with astrometry...

Workaround 1: fix (R.A., Dec.) in SExtractor catalog with xy2sky from WCStools

Workaround 2: wcs-addpv.py by Evert Rol https://github.com/evertrol/sippv

TPV vs SIP: illustration

Cutouts from 10 plates median-stacked with SWarp

Flatbed scanner vs. astrometry

The "hacksaw" pattern and stitches

Mitigated with local corrections, no hope for science, just ID

Flatbed scanner vs. astrometry The stitch is hard to see (its in the marked area)

Magnitude calibration We use the fitting relation suggested for DSS by Bacher, Kimeswenger & Teutsch (2005 MNRAS, 362, 542)

Filtering SExtractor detections To remove blended and extended sources (that will have bad photometry) reject outliers in mag-size curve

VaST -> lightcurves of all sources The lightcurves may be (non)interactively earched for variability using "variability index"-mag. plots or processed with external software like VARTools (period search, etc.)

VaST testing

- Automated testing
- VMs with various Linux & FreeBSD versions
- Profiling with Valrind
- Memory debugging: Valgrind & AdressSanitizer

Get images

Image access

We are testing web interface providing cutouts from Moscow "A" series plates:

- 40cm astrograph
- 10x10 deg, 30x30cm plates
- limit B<17
- five fields digitized so far
- 169 to 413 plates/field

Image access

Ξ

JD (mid. exp.) 2433156.52600 = 1949-08-28 00:37:27 (UT)

Image access

Ξ

JD (mid. exp.) 2433975.32900 = 1951 - 11 - 24 19:53:47 (UT)

Image access

 \equiv

JD (mid. exp.) $2434385.21600 = 1953-01-07 \ 17:11:03 \ (UT)$

Photometry of known variables >2000 known variables passed automated scatter/smoothness-based variability selection. Photometry available at http://scan.sai.msu.ru/pl/

4C 32.55 104Her 05 -2 20251

Summary

- VaST is an open code that constructs lightcurves from a series of photographic (or CCD) images
- Can be used interactively or as a pipeline
- We use it for variable star studies with digitized Moscow collection plates
- Test access to the images of five 10x10 deg fields and photometry of ~2000 known variables, see http://scan.sai.msu.ru/pa/