LAMOST-II Medium resolution

spectroscopic survey

Chao Liu (National Astronomical Observatories, CAS, Beijing) 2019-03-13@Bamberg

LAMOST Telescope

- 4-meter reflective Schmidt telescope with segmental mirrors and active optics
- Quasi-meridian
- 4000 fibers on the 5 degree-FoV focal plane
- 16 spectrographs
- Low resolution spectra: R~1800, wavelength: 370-900nm

LAMOST Telescope

- 4-meter reflective Schmidt telescope with segmental mirrors and active optics
- Quasi-meridian
- 4000 fibers on the 5 degree-FoV focal plane
- 16 spectrographs
- Low resolution spectra: R~1800, wavelength: 370-900nm

LAMOST Telescope

- 4-meter reflective Schmidt telescope with segmental mirrors and active optics
- Quasi-meridian
- 4000 fibers on the 5 degree-FoV focal plane
- 16 spectrographs
- Low resolution spectra: R~1800, wavelength: 370-900nm

The LAMOST spectroscopy survey footprint

- 20110901~20120701: 404
- **20120901~20130701: 811**
- 20130901~20140701: 732
- 20140901~20150701: 738
- 20150901~20160701: 776
- 20160901~20170701:693
- 20170901~2018070174

• 10 + million stellar spectra with limiting magnitude r<17.8

75°

60°

-60°

.30°

-30°

-45°

15°

No

-15°

- Scientific goals:
 - The Galactic disk and halo, Stellar physics

Type II+III radial density profile

Wang, **LC** et al. 2018

only with Gaia DR2 data

Katz et al. 2018

Cheng, LC et al. 2019, using 12000 OB stars

Cheng, LC et al. 2019, using 12000 OB stars

20.00 10.00

D'UNGHIA ET AL.

10.00[°] 0.00 ^H 10.00[°] 10.00[°] 20.00

D'Onghia et al. 2016, simulation

2029 Myr

Better view of Sgr stream

LAMOST M-giants + Gaia proper motions

Li, **LC** et al. 2019

Belokurov+2014

Stellar physics

Upgrade the spectrographs

- Blue arm: 496-533 nm (Mg Triplet, metal lines)
- Red arm: 630-680 nm (Halpha, Li)

Information extracted from med-res spectra

- Teff, logg, [Fe/H], [alpha/Fe]
- around 20 elemental abundances: C, Na, Mg, Ca, Si, Ti, Sc, Cr, Fe, V, Mn, Co, Ni, Cu, Ba, Y, Sm, Nd, Li etc.
- accurate radial velocity ~1 km/s
- stellar rotation: vsini~10 km/

Survey plan of LAMOST II

- 5-year survey: Oct 2018-Jun 2023
- Dark/gray nights (13-14 nights/month): low-res survey same as LAMOST I
- Bright/gray nights (13 nights/month): med-res survey (MRS)
- Expected numbers of spectra
 - low-res: ~3 million more spectra with 1.5h exposure (stars + galaxies + QSOs), r<~18
 - med-res: ~2 million stellar spectra (20'*3 exposure),G<15
 - med-res: ~200 K stars with time-domain spectra (20'*n_epoch, <n_epoch>~60), G<14

Time-domain spectroscopic survey

- Observation mode & products
 - short exposure (~20min) multiple epochs per night (~8 exposures per night)
 - each exposure reaches G<14 at S/N>10
 - average 60 epochs for each field in 5 years
 - In total 100 time-domain fields with 20 sq. deg.

Footprints of time-domain regions

Scientific goals

- Galactic archeology
- Star forming region: Young populations
- Kepler/K2 & TESS: Variables, binaries, exoplanet hosts
- Fields: binaries
- Open clusters
- Galactic nebula: HII region, SNR, PNe

Hogg et al. 2016

Young stellar populations

Protostars

PMS stars

Stutz et al. 2016

Exoplanet host stars

 Knowing the properties of the host stars of exoplanets is critical in the studies of planet formation and evolution

- Searching stellar mass black hole
- Gravitational wave progenitor (NS+NS, BH+BH)
- Supernova type la progenitor (WD+*, WD+WD)
- Evolution of massive stars
- Binary formation/evolution

- Searching stellar mass black hole
- Gravitational wave progenitor (NS+NS, BH+BH)
- Supernova type la progenitor (WD+*, WD+WD)
- Evolution of massive stars
- Binary formation/evolution

- Searching stellar mass black hole
- Gravitational wave progenitor (NS+NS, BH+BH)
- Supernova type la progenitor (WD+*, WD+WD)
- Evolution of massive stars
- Binary formation/evolution

- Searching stellar mass black hole
- Gravitational wave progenitor (NS+NS, BH+BH)
- Supernova type la progenitor (WD+*, WD+WD)
- Evolution of massive stars
- Binary formation/evolution

Summary

- LAMOST II = Low-res + Med-res
- LAMOST II ==> Med-res Time-domain survey
- Future products:
 - 200K stars with time-domain med-res spectra (G<14)
 - 2 million single-epoch med-res spectra (G<15)
 - ~13 million low-res spectra (inc. LAMOST I) (r<~18)