Photographic and Digital Surveys at Sonneberg Observatory

Peter Kroll
Sonneberg Observatory
pk@4pisysteme.de

Large Surveys with small telescopes (ASTROPLATE III)
Bamberg 2019

2019/03/11
Photographic Surveys

Introduction

Sonneberg

Surveys at Sonneberg Observatory
Photographic Surveys

Introduction

Sonneberg Observatory

Peter Kroll

Surveys at Sonneberg Observatory
Photographic Surveys

Introduction

Brief history

- 1925: founded by Cuno Hoffmeister as municipal observatory
- 1931: Branch station of Berlin-Babelsberg Observatory
- 1946: Institute of German Academy of Science
- 1992-1994: Branch station of Tautenburg Observatory
- 1995-2003: Municipal observatory
- since 2004: Operated by private company (Ltd.) 4π Systeme - Gesellschaft für Astronomie und Informationstechnologie mbH
- near future?: associated institute of Coburg University of Applied Sciences and Arts?
Plate collection

- Total: approx. 275,000 plates
- Epochs: 1923 – 2010
- Exposure times: 15' ... 4h
- Taken with:
 - Schmidt 500/700/1720 (8,500)
 - Astrographs 400/1950, 400/1600, ... (25,000)
 - Tessars 55/250 (150,000)
 - others
- Plates sizes:
 - 6 × 6 cm², ..., 13 × 13 cm², ..., 30 × 30 cm²
- FoV: 3° ... 30°
- Sky coverage: δ > −30°; + some southern fields
- 99% direct images, 1% spectral plates
Schmidt telescope: 500/700/1720
Sky Patrol: \((8 \text{ pg} + 6 \text{ pv}) \times \frac{55}{250}\)
Plate archive: Astrograph plates
Plate archive: Astrograph plates
Plate archive: Sky patrol plates
1980ies: key punching log books (dBase), \(\approx \) 90%

1991: Simple line scanner with projection objective (3 years / 5000 plates)

2004: Bulk scanning started

Today:

- Small plates (sky patrol): 211,751 scans
- Big plates (astrograph): 25,679 scans
- Total: \(237,430 \) \(\approx \) 85%

Resolution: 20 \(\mu \text{m} \) (1200 dpi), 16 bit

File format: TIFF + gzip compression (to 80\% . . . 90\%)
\(\rightarrow \) \(<\text{SCANID}>\).tif.gz

Sizes: 72 . . . 450 MB (raw data)
Digitization hardware

HP Scanjet 7400C with illumination unit + VueScan 6.2
Digitization hardware

Microtek ScanMaker 9800 XL + VueScan 6.2
Today: total of approx. 25 TB (uncompressed)
initially 2700 DVDs (double storage!)
plus 4 HDs (2 TB)
NEW (since 2019): NAS with 30 TB
Current and future activities

- Continuing key-punching log books and scan meta data
- Database conversion
- Historic long-time light-curves of prominent objects (e.g. Boyajian’s star)
- Search for (rare) outbursts of WZ-Sge-stars
- WCS solution for Sky Patrol plates (see poster SOPHIA)
- New scanner to be procured
- Scanning of remaining plates (≈ 40,000)
- Scanning of “foreign” plates (≈ 5,000)
- Integration in APPLAUSE?
Digital Surveys: ASPA (not realised)

- Goal: Continuation of sky monitoring by direct digital imaging
- mid 1990ies: initiated by Nikolaus Vogt et al.
- Digital Sky Patrol planned at 6 astro-sites world-wide
- **ASPA** – All-Sky Patrol Astrophysics
- All proposals rejected . . .

- How to continue? → Set up a (low budget) sky monitoring!
- See also our poster about Sonneberg Observatory Digital All-Sky Survey (SODASS)
Digital Surveys

All-sky monitoring with fish-eye cameras

Fish-eye cameras

Starlight XPress Oculus

In-house dev. (f=1.37 mm / 2.5)
Fish-eye cameras

- Operated since 2015 / 2017 (parallel)
- Image size $1k \times 1k / 1.5k \times 1.5k$ pixels
- Exposure time: 20 sec, readout: 2.5 sec
- Limiting magnitude (integral): $6^m / 7^m$ (zenith)
- Continuous monitoring from dawn to dawn (600 ... 2500 images/night)
- Every day: morning video → What happened last night?
- Monitoring of stars: 25,000 ... 100,000 data points/year
Comparison of the two cameras

[Images of two all-sky monitoring fish-eye camera views from Sonneberg Observatory, labeled AllSkyCam 1 and AllSkyCam 2, showing the sky at different times with meteors visible.]

2019-02-26T20:00:00 UTC Sonneberg Observatory

2019-02-26T19:59:54 UTC Sonneberg Observatory
Bright meteors and fireballs

Fireball of 2018-06-30 → meteorite fall predicted near Bamberg!
Test case \(\delta\) Cephei

(Classical estimation with Argelander method in other context. Automatic photometric reduction still to be made!)
Goal: going deeper!
Approach: make use of existing optics with consumer cameras
Tessar 80/360 mm + Canon EOS 5D Mark 1
Limiting magnitude (V): \(\approx 12^m \) (3 min)
Field of view: \(3.8^\circ \times 5.7^\circ \)
Fields selected to observe prominent or important objects
Running since 2014
All clear nights used, even gaps of one hour (Walter Fürtig)
Field monitoring

Digital Surveys

Field monitoring

Peter Kroll

Surveys at Sonneberg Observatory
Examples (2014 – present, G channel): R CrB, SX Her, VV Cep
Next step: Many automatic telescopes

- Goal: Cover all sky at high cadence down to 12^m or deeper
- Approach: Several small telescope (low-cost mount) placed on a parallactic platform (daily motion)
- Study by Simon Gast (2017):

![Telescope and platform images]